уклонение отвеса, угол, образованный отвесной линией (См.
Отвесная линия) в данной точке земной поверхности и проведённой в той же точке нормалью к поверхности некоторой матем фигуры с которой сравнивается Земля в отношении её вида и размеров. В качестве такой фигуры в геодезии (См.
Геодезия) принимается эллипсоид вращения, называемый
Референц-эллипсоидом и имеющий известные размеры и заданное положение в теле Земли. Если О. о. измеряется в плоскости в которой лежат отвесная линия и нормаль к поверхности референц-эллипсоида, то оно называется полным. Обычно полное О. о. разлагается на две его составляющие равные его проекциям на плоскость меридиана - так называется О о. в меридиане (по широте) и на плоскость, перпендикулярную к ней - О. о. в первом вертикале, или О. о. по долготе.
Составляющие О. о. в меридиане ξ и первом вертикале η определяют путем сравнения астрономической широты φ и долготы λ точки земной поверхности с её геодезической широтой В и долготой L, причём они выражаются формулами ξ = φ - В, η = (λ - L) cos φ.
Составляющая О. в. в первом вертикале может быть определена также путём сравнения астрономического азимута и некоторого направления с его геодезическим азимутом А по формуле η = (α - A) ctg φ).
О. о. от нормали к поверхности референц-эллипсоида называются относительными и наблюдёнными, т.к. они получаются по результатам астрономических наблюдений и геодезических измерений. На величины относительных О. о. ошибки наблюдений и измерений влияют сравнительно слабо. В основном они зависят от ошибок в принятых размерах и заданной ориентировке референц-эллипсоида в теле Земли, а также от неправильностей её внутреннего строения. По величинам относительных О. о. могут быть определены отступлением
Геоида от референц-эллипсоида (см.
Нивелирование), а также размеры и ориентировка земного эллипсоида (См.
Земной эллипсоид), наиболее правильно представляющего фигуру и размеры Земли в пределах данной области её поверхности.
Лит.: Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Михайлов А. А., Курс гравиметрии и теории фигуры Земли, 2 изд., М., 1939; Молоденский М. С., Юркина М. И., Ефремов В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, "Тр. Центрального научно-исследовательского института геодезии, аэросъемки и картографии", 1960, в. 131; Слудский Ф. А., Об уклонении отвесных линий, М., 1863.
А. А. Изотов.